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Abstract Therelation between symmetries and first integrals for both continuous canonical Hamiltonian equations
and discrete Hamiltonian equations is considered. The observation that canonical Hamiltonian equations can be
obtained by a variational principle from an action functional makes it possible to consider invariance properties of
a functional in the same way as done in the Lagrangian formalism. The well-known Noether identity is rewritten
in terms of the Hamiltonian function and symmetry operators. This approach, which is based on symmetries of the
Hamiltonian action, provides a simple and clear way to construct first integrals of Hamiltonian equations without
integration. A discrete analog of this identity is developed. It leads to a relation between symmetries and first inte-
grals for discrete Hamiltonian equations that can be used to conserve structural properties of Hamiltonian equations
in numerical implementation. The results are illustrated by a number of examples for both continuous and discrete
Hamiltonian equations.

Keywords First integral - Discrete Hamiltonian equations - Symmetry

1 Introduction

It has been known since E. Noether’s fundamental work that conservation laws of differential equations are con-
nected with their symmetry properties [1]. For convenience we present here some well-known results (see also,
for example, [2, Sect. 4.2], [3, Sect. 12-7], [4, Sect. 20]), for both Lagrangian and Hamiltonian approaches to
conservation laws (first integrals).

Let us consider the functional

L(u):/ L(x,u,uy)dx, (1.1)
Q
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254 V. Dorodnitsyn, R. Kozlov

where x = (x!, x2, ..., x™) are independent variables, u = (!, u?, ..., u") are dependent variables, u; = (ui.‘)
are all first-order derivatives uf = %, Q is a domain in R” and L(x, u, u;) is a first-order Lagrangian. The
functional (1.1) reaches its extremal values when u(x) satisfies the Euler—Lagrange equations
SL oL D oL 0. k=1 (1.2)
—=——Di| — | =0, =1,...,n, .
Suk duk ! au{.‘
where

d ¢ 0 ¢ 0 .
Di:W—i—uim—i—uﬁm—F“', l=1,...,m

J

are total differentiation operators with respect to the independent variables x’. Here and below we assume summation
over repeated indexes. Note that the equations of (1.2) are second-order PDEs.
We consider a Lie point transformation group G generated by the infinitesimal operator

. 9 ' 9
Xzél(X,M)W—i—ﬂ (x,u)er..., (1.3)

where dots mean an appropriate prolongation of the operator on partial derivatives [5, Sect.4], [6, Sect.2.3],
[7, Sect.4], [8, Sect.2.3]. The group G is called a variational symmetry of the functional L(«) if and only if the
Lagrangian satisfies [1]

X(L)+ LDj(g") =0, (1.4)

where X is the first prolongation, i.e., the prolongation of the vector field X on the first derivatives uf We will
actually need a weaker invariance condition than given by Eq. 1.4. The vector field X is a divergence symmetry

of the functional L(u) if there exist functions Vi (x, u,u1),i = 1,...,m such that [9] (see also [6, Sect.4.4],
[7, Sect.22], [8, Sect.5.2])
X(L) + LDi(§") = Di(V"). (1.5)

An important result for us is the following: if X is a variational symmetry of the functional L(u), it is also a
symmetry of the corresponding Euler-Lagrange equation. The symmetry group of (1.2) can of course be larger than
the group generated by variational and divergence symmetries of the Lagrangian.

Noether’s theorem [1] states that for a Lagrangian satisfying condition (1.4) there exists a conservation law of
the Euler-Lagrange equations (1.2):

; i 0L

D; (g’L+(n" —gfu’;)—k)zo. (1.6)

ou’
l

This result can be generalized: if X is a divergence symmetry of the functional L.(u), i.e., Eq. 1.5 is satisfied, then

there exists a conservation law

D; (s"L+(nk—sfu’;)a—Lk—V")=o (1.7)
u;
of the corresponding Euler-Lagrange equations.

The strong version of Noether’s theorem [7, Sect.22] states that there exists a conservation law of the Euler—
Lagrange equations (1.2) in the form (1.6) if and only if condition (1.4) is satisfied on the solutions of (1.2).

In the present paper we are interested in the canonical Hamiltonian equations

.. O0H . oH . _ (1.8)
= —, i =——, 1=1,...,n. ’
q ap: Pi g’

These equations can be obtained by the variational principle from the action functional

n .
5 / (pid’ — H(t, q, p))di =0 (19)
1
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Invariance and first integrals of continuous and discrete Hamiltonian equations 255

in the phase space (q, p), where q = (¢',¢%,....¢").p = (p1. p2. ..., pa) (see, for example, [10, Chap.4],
[11, Sect. 1.1]).
Let us note that the canonical Hamiltonian equations (1.8) can be obtained by action of the variational operators

) a 0

—=——-D—, i=1,...,n, (1.10)
épi Opi dpi
) ad 0 )

—Z——D—_, l=1,...,l’l, (111)

8qt aq! aq!

where D is the operator of total differentiation with respect to time
a ;0 0

D=—4+¢ — 4+ p— 4+, 1.12
5 T 8ql+p’ap,~+ (1.12)

on the function

piqi - H(t? q, p)

The Legendre transformation relates Hamiltonian and Lagrange functions
L(t,q.4) = pig' — H(1.q.p). (1.13)

where p = 0L /9dq, q = 0 H/dp. It makes possible to establish the equivalence of the Euler—Lagrange and Hamil-
tonian equations [4, Sect. 15]. Indeed, from the Euler—Lagrange equations for one independent variable (m = 1)

SL aL JL .
—=—-0D —0 :0, l:1,...,n (114)
8q! aq’ aq’

we can obtain the canonical Hamiltonian equations (1.8) using the Legendre transformation. It should be noticed that

the Legendre transformation is not a point transformation. Hence, there is no conservation of Lie group properties of

the corresponding Euler—Lagrange equations and Hamiltonian equations within the class of point transformations.
Lie point symmetries in the space (¢, q, p) are generated by operators of the form

9 . 9 9
X=&tqp—+nqp—+tqp)—. (1.15)
at aq! api

l
The standard approach to conservation properties of the Hamiltonian equations is to consider so-called
Hamiltonian symmetries [6, Sect.6.3]. In the case of canonical Hamiltonian equations these are the evolution-
ary (¢ = 0) symmetries (1.15)

- ; 0 0
X=nqp)—+&t qp)— (1.16)
aq' api
with
R (1.17)
n_aplﬂ - aqlv - ERRIEIEE] .
for some function I (¢, q, p), namely, symmetries of the form
- al o al o
Xj=——1 — ——. (1.18)

These symmetries are restricted to the phase space (q, p) and are generated by the function I = I(z, q, p). For
symmetry (1.18) the independent variable ¢ is invariant and plays the role of a parameter.

Noether’s theorem (Theorem 6.33 in [6]) relates Hamiltonian symmetries of the Hamiltonian equations with
their first integrals. Restricting ourselves to the case of the canonical Hamiltonian equations, we may formulate this
as follows:

Proposition 1.1 An evolutionary vector field X of the form (1.16) generates a Hamiltonian symmetry group of
the canonical Hamiltonian system (1.8) if and only if there exists a first integral I1(t,q,p) so that X = X is the
corresponding Hamiltonian vector field. Another function I(t,q.p) determines the same Hamiltonian symmetry if
and only if I = I + F(t) for some time-dependent function F(t).
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256 V. Dorodnitsyn, R. Kozlov

Thus, we obtain that the Hamiltonian symmetry determines a first integral of the canonical Hamiltonian equa-
tions up to some time-dependent function, which can be found with the help of these equations. This approach has
two disadvantages. First, some transformations lose their geometrical sense if considered in the evolutionary form
(1.18). Second, there is a necessity of integration to find first integrals with the help of (1.17). In this approach it is
also unclear why some point symmetries of Hamiltonian equations yield integrals, while others do not.

In the present paper we will consider symmetries of the general form (1.15) that are not restricted to the phase
space and can also transform 7. In contrast to Hamiltonian symmetries in the form (1.18) the underlying symmetries
have a clear geometric sense in finite space and do not require integration to find first integrals. We will provide a
Hamiltonian version of Noether’s theorem (in the strong formulation) based on a newly established Hamiltonian
identity, which is an analog of the well-known Noether identity for the Lagrangian approach. The Hamiltonian
identity links directly an invariant Hamiltonian function with first integrals of the canonical Hamiltonian equations.
This approach provides a simple and clear way to construct first integrals by means of only algebraic manipulations
with symmetries of the action functional. The approach will be illustrated by a number of examples, including
equations of the three-dimensional Kepler motion.

The paper is organized as follows: In Sect. 2 we introduce the definition of an invariant Hamiltonian and establish
the necessary and sufficient condition for H to be invariant. Section 3 contains the main propositions of the present
paper: Lemma3.1 introduces a new identity, which is used in Theorem 3.2 to formulate the necessary and sufficient
condition for the existence of first integrals of Hamiltonian equations (Hamiltonian version of Noether’s theorem in
the strong formulation). In Sect.4, Lemma4.1 introduces two further identities, which are used in Theorem 4.4 to
formulate necessary and sufficient conditions for the canonical Hamiltonian equations to be invariant. Section 5 con-
tains example ODEs which are considered as both Euler—Lagrange equations and canonical Hamiltonian equations.
In particular, we consider the equations of Kepler motion. In Sect.6 we present discrete Hamiltonian equations.
Their symmetries and first integrals are shown to be related in the same way as those for the continuous canonical
Hamiltonian equations. The final Sect.7 contains concluding remarks.

2 Invariance of elementary Hamiltonian action

As an analog of the Lagrangian elementary action [6, Sect.4.2], [7, Sect.22], we consider the Hamiltonian elemen-
tary action

pidg’ — Hdt, Q.1

which can be invariant or not with respect to a group generated by an operator of the form (1.15).

Definition 2.1 We call a Hamiltonian function invariant with respect to a symmetry operator (1.15) if the elementary
action (2.1) is an invariant of the group generated by this operator.

Theorem 2.2 A Hamiltonian is invariant with respect to a group generated by the operator (1.15) if and only if the
following condition holds

¢iq' + piD(n') — X(H) — HD(§) = 0. 2.2)

Proof The invariance condition follows directly from the action of the operator X prolonged on the differentials d¢
anddg! i =1,...,n:

0 ; 0 0 9 .
X=&tqp)—+nt.qp)— + &, qp)— + D(E)dt —— + D(n')dt —. 2.3
§t.q.p) o+ ( qp)aql+§z( qp)api+ &) 8(dt)+ (") 3da) (2.3)
Application of (2.3) to the Hamiltonian elementary action (2.1) yields
X(pidg' — Hdt) = (64" + piD(n') — X (H) — HD(§))dr = 0. o
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Invariance and first integrals of continuous and discrete Hamiltonian equations 257

Remark 2.3 From the relation
L(1,q, @)dr = pidg" — H(z, q, p)dt (2.4)

it follows that if a Lagrangian is invariant with respect to a group of Lie point transformations, then the Hamiltonian
is also invariant with respect to the same group (of point transformations). The converse statement is false. For
example, symmetries providing components of the Runge—Lenz vector as first integrals of Kepler motion are point
symmetries in the Hamiltonian framework (point 5.3). However, they are generalized symmetries in the Lagrangian
framework [6, Chap.5].

The proof follows from the action of operator (1.15) on relation (2.4).

Remark 2.4 The operator of total differentiation (1.12) applied to the Hamiltonian H and considered on the solutions
of the Hamiltonian equations (1.8) coincides with partial differentiation with respect to time:

9H  ,0H _0H oH
D(H)lg=Hyp=Hy = | 77 +4 75 + =0

-+ pi— 2.5)
dt agi " ap; L_Hp,p__Hq

3 The Hamiltonian identity and Noether-type theorem

Now we can relate conservation properties of the canonical Hamiltonian equations to the invariance of the Hamil-
tonian function.

Lemma 3.1 The identity

g ; 9H .  OH
¢iqg' +piD(m') — X(H) — HD(§) E%‘(D(H)— W) -7 (Pi-i-T)

1

i OH i
+éi (6] - 5) + Dlpin —§H] 3.1

is true for any smooth function H = H (t,q,p).
Proof The identity can be established by direct calculation. O
We call this identity the Hamiltonian identity. This identity makes it possible to develop the following result.

Theorem 3.2 The canonical Hamiltonian equations (1.8) possess a first integral of the form
I=pin' —&H (3:2)
if and only if the Hamiltonian function is invariant with respect to the operator (1.15) on the solutions of (1.8).

Proof The result follows from the identity (3.1). O

Theorem 3.2 corresponds to the strong version of the Noether theorem (i.e., necessary and sufficient condition)
for invariant Lagrangians and Euler—Lagrange equations [7, Sect.22].

Remark 3.3 Theorem 3.2 can be generalized to the case of the divergence invariance of the Hamiltonian action
&ig' + piD(') — X(H) — HD(€) = D(V), (3.3)

where V = V(¢, q, p). If this condition holds on the solutions of the canonical Hamiltonian equations (1.8), then
there is a first integral

I=pn —&H—V. (3.4)
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4 Invariance of canonical Hamiltonian equations

In the Lagrangian framework, the variational principle provides us with the Euler-Lagrange equations. It is known
that the invariance of the Euler-Lagrange equations follows from the invariance of the action integral. The following
Lemma4.1 and Theorem 4.2 establish the sufficient conditions for canonical Hamiltonian equations to be invariant.

Lemma 4.1 The following identities are true for any smooth function H = H(t, q, p):

8 . ; j . oH
~—(iq" +piD(n’) — X(H) —HD()) = D(n/) — ¢’ D(E) — X | —
8pj pj
9E ( OH ' (. OH A . 0H ,
ap; at ap; \"" " aq’ ap; api
8 . ; ) oH
~&iq" + piD(n') — X(H) — HD(§)) = —D() + pjD(E) — X | —
8q’ 9g
A€ 9H an' . 0H ¢ (.; OH ,
—\\DH)—— ) —|—+3;D i+ — — ¢ ——), j=1,...,n, 4.2
+8q/( (H) 3t) (8q1+ ij (S))(pl+3q’)+aqf q api J n 4.2)
where the notation §;; stands for the Kronecker symbol.
Proof The identities can be easily obtained by direct computation. O

Theorem 4.2 If a Hamiltonian is invariant with respect to the symmetry (1.15), then the canonical Hamiltonian
equations (1.8) are also invariant.

Proof For invariance of the canonical Hamiltonian equations (1.8) we need the equations

L aH ,
D(n’)—q’D(S)=X(a—), j=1,...,n
Pj

. oH )
D(j) —pjDE) = —-X 97 i=1....n
to hold on the solutions of the Hamiltonian equations [6, Chap. 2]. These conditions follow from the identities (4.1)
and (4.2). |

Remark 4.3 The statement of Theorem 4.2 remains valid if we consider divergence symmetries of the Hamiltonian,
i.e., condition (3.3), because the term D (V') belongs to the kernel of the variational operators (1.10), (1.11).

The invariance of the Hamiltonian is a sufficient condition for the canonical Hamiltonian equations to be invariant.
The symmetry group of the canonical Hamiltonian equations can of course be larger than that of the Hamiltonian.
The following Theorem 4.4 establishes the necessary and sufficient conditions for canonical Hamiltonian equations
to be invariant.

Theorem 4.4 The canonical Hamiltonian equations (1.8) are invariant with respect to the symmetry (1.15) if and
only if the following conditions are true (on the solutions of the canonical Hamiltonian equations):

) .i ; .
S—(CitI' +piD(n') — X (H) — HD(£)) =0, j=1...,n (4.3)
Dj g=Hp, p=—H,
k) » . .
—j(éiql+PiD(nl)—X(H)—HD(§)) =0, j=1....,n (4.4)
8q q=H,. p=—H,
Proof The statement follows from the identities (4.1) and (4.2). |
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Invariance and first integrals of continuous and discrete Hamiltonian equations 259

It should be noted that conditions (4.3) and (4.4) are true for all symmetries of canonical Hamiltonian equations.
But not all of those symmetries yield the “variational integral” of these conditions, i.e.,

@4 + piD(') — X(H) — HDE))lgty. p——t1, = O,
which gives first integrals in accordance with Theorem 3.2. That is why not all symmetries of the canonical Hamil-

tonian equations provide first integrals. In the next section we illustrate the theorems, given above, on a number of
examples.

5 Applications

In this section we provide examples of how to find first integrals with the help of symmetries.

5.1 A scalar ODE

As a first example we consider the second-order ODE
1

= —, 5.1)
u
which admits Lie algebra L3 with basis operators
X =2 x 2ta+ o x z28+t 9 (5.2)
= —, = — u—, = —_— u—--. .
o T 0 T aw T T

5.1.1 Lagrangian approach

The Lagrangian function

L(t,u, i) = % (uz — iz) , (5.3)
u

which provides Eq. 5.1 as its Euler—Lagrange equation, is invariant with respect to X and X». Therefore, by means
of Noether’s theorem there exist first integrals

Jl=—l i+ . hh=ui—t i+ ). (5.4)
2 u? u?

The action of the third operator X3 yields the divergence invariance condition

2
XL+ LD(E) = uii =D (”7) (5.5)
Due to the divergence invariance of the Lagrangian we can find the following first integral
1 (1 -

J3=—§ ﬁ+(u—tu) . (5.6)
Alternatively, one can find the last integral from another Lagrangian function
~ 2 1
Lwiy= (=) ==, (5.7)

t u

which is exactly invariant with respect to X3.

It should be mentioned that independence of first integrals obtained with the help of the Noether theorem is
guaranteed only in the case when there is one Lagrangian which is invariant with respect to all symmetries. This
condition is violated in the considered example. Therefore, the integrals obtained are not independent. The integrals
(5.4),(5.6) are connected by the relation
401J3 — J3 = 1. (5.8)
Thus, any two integrals among (5.4), (5.6) are independent. Putting J; = A/2, J, = B and excluding #«, we find
the general solution of (5.1) as

Au® + (At — B> +1=0. (5.9)
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5.1.2 Hamiltonian framework

Let us transfer the preceding example into the Hamiltonian framework. We change variables:

oL

= M, = - = u.
q pP=-
The corresponding Hamiltonian is
H(t,q,p):it%—Lzl szri . (5.10)

ot 2 q*

The Hamiltonian equations
. .1
4=r P=3 (5.11)
admit symmetries

3 d 3 3 3 3 d
X = Xy =2—+q— — p— X3=t2—+tq—+(q—tp)$. (5.12)

at’ ar  Tag  Tap’ at dq
We check the invariance of H in accordance with Theorem2.2 and find that condition (2.2) is satisfied for the
operators X and X». Using Theorem 3.2, we calculate the corresponding first integrals

1 1 1
h=-H=-5 (P2+—2), Iz=pq—t(P2+—2)- (5.13)
q q

For the third symmetry operator the Hamiltonian is divergence invariant with V3 = ¢2/2. In accordance with
Remark 3.3, this yields the following conserved quantity
1 (12 2
L=—x\—=+@—1p)"). (5.14)
2 \¢q
Note that no integration is needed to provide solutions of (5.11). As we noted before, in the Lagrangian case only
two first integrals are functionally independent. Putting I} = A/2 and I, = B, we find the solution of (5.11) as

) 5 B — At
A+ (At =B +1=0, p= . (5.15)
q

5.2 Repulsive one-dimensional motion.

As another example of an ODE we consider one-dimensional motion in a Coulomb field (the case of a repulsive

force):
1
i = —, 5.16
R (5.16)
which admits Lie algebra L, with basis operators
0 0 0
X1=—, Xo=3t—+2u—. 5.17
I T P C-17)
5.2.1 Lagrangian approach
The Lagrangian function
a1
Lt,u,u) =— — — (5.18)
2 u
is invariant only with respect to X . Therefore, Noether’s theorem yields the only first integral
w1
n="40 (5.19)
2 u

In this case the Euler-Lagrange equation admits two symmetries while the Lagrangian is invariant with respect to
one symmetry operator only.
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5.2.2 Hamiltonian framework

We change variables

oL .
= M, = - = u
q p 7
and find the Hamiltonian function
AL P> 1
H(t,q,p) =t——L=—+—. (5.20)
au 2 q
The Hamiltonian equations have the form
. . 1
i=p =3 (-21)
We rewrite symmetries in the canonical variables as the following algebra L»:
X—8 X—3t8+2 9 0 (5.22)
PR T Ty T Py '

The invariance of the Hamiltonian condition (2.2) is satisfied for operator X; only. Applying Theorem3.2, we
calculate the corresponding first integral

1
h=—-H=—-—{—+—-). (5.23)
2 q
Application of operator X, to the Hamiltonian action gives
2
. . p 1
¢4+ pD(y) — X(H) — HD(§) = pg — (7 + 5) # 0. (5.24)
Meanwhile, in accordance with Theorem 4.4 we have
5 . .
(&4 + pD(n) — X (H) — HD()) =G = Pljep. jos =0,
p - s 1 ’ q2
4=p. =

=0.

8
E(m + pD(n) — X(H) — HD(§))

o1
4=p, =25 1

We will show below that there exists a second integral of non-local character.
It was shown in [12] that Eq.5.16 can be linearized by a contact transformation. For (5.21) this transformation
is the following

. s 1
q=pr. P o)

2 4
p(t) = P(s), Q*(s) = —, dr =——xds. (5.25)
q(t) 03
The new Hamiltonian
1
Hs, Q. P) = —(P*+ 0% (5.26)
corresponds to the linear equations
dQ dp
= =P, —=-0, 5.27
ds ds Q ( )
which describe the one-dimensional harmonic oscillator. These equations have two independent first integrals
1 P
I = E(P2 + 0%, I, = arctan (5) +5, (5.28)
which allow us write down the general solution of (5.27) as
Q = Asins + Bcoss, P = Acoss — Bsins, (5.29)

where A and B are arbitrary constants. Applying the transformation (5.25) to integral I, we find the non-local
integral for (5.21):

. pyaY 1 [1 dt
12 = arctan (W) ﬁ ; m (530)
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5.3 Kepler motion

The Kepler problem is a special case of the two-body problem, in which the two bodies interact by a central force
that varies in strength as the inverse square of the distance between them [2, Chap. 9], [3, Chap. 3], [4, Chap. 2]. The
three-dimensional Kepler motion of a body in a Newtonian gravitational field is given by the equations

. . K?

i=p p=-—3q r=ld, qpeRk’ (5.31)

where K is a constant, with the initial data

q0) =qp, pO) = po.
These equations are Hamiltonian. They are defined by the Hamiltonian function

1, K2
H(q.p) = ZIpl" = —- (5.32)
r
Among the symmetries admitted by (5.31) there are
d ;0 d
Xo=—, X1 =3t—+2¢"— — ,
0 P 1 P q g Di i
X =—qji+q' —pjz—+p i 7
) 8q[ 8q/ ]apl 18/3 5

3 K? 3
Y= Qq'pe — q* p1 — (q. PO 5 g + (Plpk — (. P — —5(q'q" — (@, q)Szk)) (=123

where (f, g) = 7 g is a scalar product of vectors.
The Hamiltonian function (5.32) is invariant for the symmetries Xy and X;;. Theorem 3.2 makes it possible to
find the first integral for symmetry X

which represents the conservation of the energy in Kepler motion. For symmetries X;; we obtain the first integrals
Lij=q'pj—q'pi. i#].
which are components of the angular momentum
L(q,p) = q xp. (5.33)
Conservation of angular momentum shows that the orbit of motion of a body lies in a fixed plane perpendicular to
the constant vector L. It also follows that in this plane the position vector q sweeps out equal areas in equal time
intervals, so that the sectorial velocity is constant [4, Sect. 7]. Therefore, Kepler’s second law can be considered as
a geometric reformulation of the conservation of angular momentum.

The scaling symmetry X is not a Noether symmetry (neither variational, nor divergence symmetry) and does

not lead to a conserved quantity.
For each of the symmetries Y; the Hamiltonian is divergence-invariant with functions

I K?
Vi=q ((p, p) + 7) —-p(q,p), =123

Hence, the operators Y; yield the first integrals

I K?
Ii=q ((Pv p) — 7) —-p(q,p), =123,

which are components of the Runge—Lenz vector
K? 1,
AQ.p)=pxL--—q=q(H(q.p)+5Ipl"| —p(@.p) (5.34)
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Invariance and first integrals of continuous and discrete Hamiltonian equations 263

Physically, vector A lies along the major axis of the conic section determined by the orbit of the body. Its magnitude
determines the eccentricity [13, p. 147].
Let us note that not all first integrals are independent. There are two relations between them given by the equations

IA> = 2H|L|> = K* and (A,L)=0.

The two-dimensional Kepler motion can be considered in a similar way. Let us remark that symmetries and first
integrals of two-dimensional Kepler motion can be obtained by restricting the symmetries and first integrals of
three-dimensional Kepler motion to the space (¢, ¢!, g%, p1, p2). As the conserved quantities of two-dimensional
Kepler motion one obtains the energy

L, K’ 1 2
Hq.p)=3p"——. r=ldl. 4=(q.9). p=(p1.p2).

one component of the angular momentum
1 2
Ly=q p2—q°p

and two components of the Runge-Lenz vector

1 1
Ar=gq' (H(q, P + §|p|2) —-pi(@,p), Ar=¢’ (H(q, p) + §|p|2) — p2(q, p)-
There is one relation between these conserved quantities, namely
A} + A3 -2HL3 = K*.

Further restriction to one-dimensional Kepler motion leaves only one first integral, which is the Hamiltonian
function.

6 First integrals of discrete Hamiltonian equations

It is known that the preservation of first integrals (conservation laws) in numerical work is of great importance
(see, for example, [14,15]). Therefore, it makes sense to establish a discrete analog of the results presented for
the continuous Hamiltonian equations. An analogous discrete framework would allow one to construct numerical
schemes with first integrals for various applied problems.

6.1 The discrete version of Hamiltonian action

We will consider finite-difference equations and discrete Hamiltonians at some point (¢, q, p) of a lattice. Generally,
the lattice is not regular. The notations are clear from the following picture:

Fa,p (tr,q+,p")

i t

To consider discrete equations we will need three points of a lattice. Prolongation of Lie group operator (1.15)
for neighboring points (t—, q_, p~) and (74, q, pT) is the following:

Xl L g Do D 0
at aq’ ap; ar_ aq" ! op;”
CHR R 5 8
+E+E+U+@+§i $+(§+—E)m+(5—$—)ah—_, (6.1
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where
E.=&(_,q_,p ), n_=n(_,q_,p), & =, q_,p),
“;:Jr = S(LF? q+’ p+)’ 771+ = Ul (tJrv q+’ p+)’ §[+ = é‘i(tJrv qu, P+)

Hamiltonian equations can be obtained by the variational principle from the finite-difference functional

Hy =D (p(qh —¢') =M, 14,4, pHh). (6.2)
Q

Indeed, a variation of this functional along a curve qi =¢;i(t), pi =¥ (t),i =1,...,natsome point (¢, q, p) will

effect only two terms of the sum (6.2):

Hy =...+pil¢ —¢") —H@_,t.q_,ph_ + p (¢". —¢") —H(t, 1, q, pDhy + - (6.3)

Therefore, we get the following expression for the variation

8 8 b
SH), = Ha‘p, + —H LY (6.4)
Spi 8q° 8t

where 8¢' = ¢:8t,8p; =Y/t i =1,...,nand

SH : . OH™  SH oH
—=q'—q¢~. —h_— — (pl'"—p,+h+ ) i=1,...,n,

Spi - opi ' 8q' g’

5H OH OH ™

SAA Y AL VN -), 6.5
5t ( o T Theg TR ) (6)

where H = H(t,ty,q,p") and H™ = H(_, t, q_, p).
For the stationary value of the finite-difference functional (6.2) we obtain the following system of 2n4-1 equations

8 8 8
—H=O, nt =0, i=1,...,n, —Hz
Spi <‘Sq &t
Thus, we arrive at a system of 2n 4 1 equations
i oH oH oH oH™
N=—:", =—— i=1,...,n, h ——H h-——+H = .
Bl(q) o (pz) g n hy o + 5 T (6.6)

which we will call discrete Hamiltonian equations. For convenience we use the following total shift (left and right)
operators and corresponding discrete differentiation operators:
S —1
+h
+hy

Let us note that the first 2n equations (6.6) are first-order discrete equations, which correspond to the canonical
Hamiltonian equations (1.8) in the continuous limit. The last equation is of second order. Its continuous counterpart
(see Remark 2.4) is automatically satisfied on the solutions of canonical Hamiltonian equations. In the discrete case
it defines the lattice on which the canonical Hamiltonian equations are discretized. Being a second-order difference
equation, it needs one more initial value (first step of lattice) to state the initial-value problem.

It is interesting to note that the equations of (6.6) can be obtained from discrete variational equations in the
Lagrangian framework [16,17], [18, Chap. 3], [19] with the help of a discrete Legendre transformation [20].

Sf)=f@ts), D=
+h +h

Remark 6.1 Equivalent formulation can be considered for the finite-difference functional
Hy = ) (pi(qh —q") = H(t, 11, a4, P4
Q

and a discrete Hamiltonian function H(z, 14, q., p).
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Invariance and first integrals of continuous and discrete Hamiltonian equations 265

6.2 Invariance of the Hamiltonian action

Let us consider the functional (6.2) on some lattice, given by equation

Q(t, hy ho,q,p) =0. 6.7)

Definition 6.2 We call a discrete Hamiltonian function H considered on the mesh (6.7) invariant with respect to a
group generated by the operator (6.1), if the action (6.2) considered on the mesh (6.7) is an invariant manifold of a

group.

Theorem 6.3 A Hamiltonian function considered together with the mesh (6.7) is invariant with respect to a group
generated by the operator (6.1) if and only if the following conditions hold

=0, XQt. hi h_.q.p)lgo=0. (6.8)
Q=0

&' D)+ p DO~ X(H) ~H DE)
+h +h +h
Proof The invariance condition follows directly from the action of X on the functional:

X Tl — g — = + i + h_Xx - =0.
(%p, (¢4 —q") Hm) Z(c, D@+ p] D)= X(H) Hﬁ(&))m 0

Q

It should be provided with the invariance of a mesh, which is obtained by the action of the symmetry operator on
the mesh equation (6.7). |

6.3 Discrete Hamiltonian identity and discrete Noether-type theorem

As in the continuous case, the invariance of a discrete Hamiltonian on a specified mesh yields first integrals of
discrete Hamiltonian equations.

Lemma 6.4 The following identity is true for any smooth function H = H(t, ty, q, p7):

. . _ oH  h_0H™
&' D) +p DO~ X(H) ~HDE) =§ (D(H e )
+h +h +h +h at  hy 0t
4 oH : oH : _ oH™
-’ (D(m) + —i) +i\p@H)-—=)+D I:Ulpi 3 (H +ho— )] (6.9)
+h aq +h ap; +h ot
Proof The identity can be established by direct calculation. O

We call this identity the discrete Hamiltonian identity. It allows us to state the following result.

Theorem 6.5 The discrete Hamiltonian equations (6.6), invariant with respect to the symmetry operator (6.1),
possess a first integral

4 9~
I:n’pi—é(H—i-h_a—?;[ ) (6.10)

if and only if the Hamiltonian function is invariant with respect to the same symmetry on the solutions of (6.6).

Proof This result is a consequence of the identity (6.9). The invariance of the discrete Hamiltonian equations is
needed to guarantee the invariance of the mesh, which is defined by these equations. O
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Remark 6.6 Theorem 6.5 can be generalized to the case of divergence invariance of the Hamiltonian action, i.e.,
&' D@ +pf DO = XH) ~H DE) = D), 6.11)
+h +h +h +h

where V = V(z, q, p). If this condition holds on the solutions of the discrete Hamiltonian equations (6.6), then
there is a first integral

; oH™
I:n’pi—é(H_+h_¥ )—V. (6.12)
Remark 6.7 For discrete Hamiltonian equations with Hamiltonian functions invariant with respect to time transla-
tions, i.e., H = H(hy, q, pT), where h =t — t, there is a conservation of energy
OH™ oH

E=H +h-—=H+h—.

T T
In this case the discrete Hamiltonian equations (6.6) are related to symplectic-momentum-energy preserving varia-

tional integrations introduced for the discrete Lagrangian framework in [21]. Note that 7 is not the discrete energy;
it has the meaning of a generating function for discrete Hamiltonian flow.

6.4 Applications
6.4.1 Discrete harmonic oscillator

The harmonic-oscillator model is very important in physics. A mass at equilibrium under the influence of any
conservative force behaves as a simple harmonic oscillator (in the limit of small motions). Harmonic oscillators are
exploited in many man-made devices, such as clocks and radio circuits.

Let us consider the one-dimensional harmonic oscillator

i=p. p=-—q. (6.13)
This system of Hamiltonian equations is generated by the Hamiltonian function
_ 1y 2

As a discretization of (6.13) we consider the application of the midpoint rule
49+ —q9 _ptp+ P+—P _ 9tq+

T2 o > (6.14)

onauniformmesh 4, = h_ = h. The presented discretization can be rewritten as the following system of equations
4 hy 4 hy

3(Q)=m(P++TCI), 3(P)=—m (11+7P+)7 hy=h_. (6.15)

It can be shown that this system is generated by the discrete Hamiltonian function

H(t, 14,4, py) = (g% + p% + hiqps).

4—nZ%
Indeed, the first and second equations of (6.6) are exactly the same as those of (6.15). The last equation of (6.6)
takes the form

244+h%) , 16/ 2(4+h%)
5@ P - 5 ap t 5
(4 —h%)? @ —n2)? (4 —h2)?

Using the first and second equations, we can rewrite it as
2 2 5 5
— + + =0.
( 4+ h2 4+h2_)(q 7
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Therefore, for the case g2 + p? # 0 this equation can be taken in the equivalent form
hy =h_=h.

The system of difference equations (6.15) admits, in particular, the following symmetries

d d 0 0
X1 = sin(wt)— + cos(wt)—, Xp = cos(wt)— — sin(wt)—,
dq ap dq ap

Xa — 0 X4 — 0 n Y — 0 0
where

B arctan(h/2)

= e .

For the symmetry operators X1 and X, we have the divergence-invariance conditions
¢+ D(q)+p+ D) —X(H) —H D) = D(V)
+h +h +h +h

fulfilled on the solutions of (6.15) with functions V| = ¢ cos(wt) and V, = —q sin(wt), respectively. Therefore,
we obtain two corresponding first integrals

71 = psin(wt) — g cos(wt), Zr = pcos(wt) + g sin(wt). (6.16)
The symmetry operator X3 satisfies the invariance condition

{+ D(g)+p+ D) —X(H) —H D) =0.
+h +h +h

Thus, we get the first integral

4 44h% g2 +p*  4h_
Iy = — + ) 6.17
’ 4—h2_(4—h2_ 2 Tttt 6.17)

Using the first and second equations of (6.15), we can simplify it as

4 ¢*+p?
4+n% 2

Ty =

Since from the first integrals Z; and Z, we have the conservation law
I} + T = ¢* + p* = const,
it follows that we can take the third first integral equivalently as
Iy =h_.
The three first integrals 71, 75, fg are sufficient for integration of the system (6.14). We obtain the solution
q = I sin(wt) — Zj cos(wt), p = I sin(wt) + I, cos(wt)
on the lattice

ti =to+ih, i=0,+1,42,..., h=1.
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6.4.2 Modified discrete harmonic oscillator (exact scheme)

The discrete harmonic oscillator of the preceding example follows the same trajectory as the continuous harmonic
oscillator, but with a different velocity. This numerical error can be corrected by time reparametrization. In this case
we will get the exact discretization of the harmonic oscillator, i.e., a discretization which gives the exact solution
of the underlying ODE:s.

In this case the harmonic oscillator (6.13) is discretized as

4+ — 4 ZQP+P+’ P+—P Z_QQ+CI+’
hy 2 hy 2
where
_ tan(h/2)
="
represents a time reparametrization. Similarly to the preceding example it can be shown that this discrete model of
the harmonic oscillator is generated by the discrete Hamiltonian

2Q

H(t 14,9, py) = ———(q" + p + Qhigp).
14— Qi

hy=h_=h, (6.18)

The system of difference equations (6.18) admits the following symmetries

.0 d ] R
X1=smt8—+cost— X2=costa——smt—

q ap’ q ap’
Ya — 0 ¥4 — Bl " B Yo — bl 0
3= 50 4_q8q Pap, s—Paq qap~
For symmetries X and X», which satisfy the divergence invariance condition (6.11) on the solutions of equations
(6.18) with functions V| = g cost and V, = —¢ sint, we obtain two first integrals
71 = psint —qgcost, Ip= pcost+gsint. (6.19)

The operator X3 satisfies the invariance condition (6.8) and provides us with the first integral Z3, which (similarly
to the preceding example) can be taken in an equivalent form:

I3 =h_. (6.20)

The scheme (6.18) gives the exact solution of the harmonic oscillator, which can be found with the help of first
integrals 77 and Z» as

q =1Irsint —Zjcost, p=7TIysint+ Zycost.
This discrete solution is given on the lattice
ti=to+ih, i=0,+1,42,..., h=1I;.
The exact schemes for two- and four-dimensional harmonic oscillators were used in [22] to construct exact

schemes for two- and three-dimensional Kepler motion, respectively.

6.4.3 A nonlinear motion

We consider a difference analog of (5.11), and choose

1 1
H(t 1.4, pe) = 5 (pi + q—z). (6.21)
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Then, in accordance with (6.6) we obtain the discrete Hamiltonian equations:

1 1 1
D@ =py, DP=—, PL+—5=p+—F (6.22)
+h +h q q q-
It is easy to check the invariance conditions for H with respect to the symmetry operators X and X», given in
(5.12). Application of Theorem 6.5 for these symmetries yields the first integrals

I 1 i
Li=-3 P2+q—2 . D=qgp—t| P+ ) (6.23)

Therefore, the solution of the discrete system (6.22) satisfies the relation
I =qp+2tT

in all points of the lattice.

7 Conclusion

The goal of the present paper has been to present a method to find first integrals of canonical Hamiltonian equations
and to establish a way of preserving Hamiltonian structure in finite-difference schemes. To achieve this we have
used invariance of the Hamiltonian action functional and its relation to first integrals of canonical Hamiltonian
equations. The conservation properties of the canonical Hamiltonian equations are based on the newly formulated
identity (called the Hamiltonian identity). This identity can be viewed as a “translation” of the well-known Noether
identity into the Hamiltonian framework. The identity makes it possible to establish a one-to-one correspondence
between invariance of the Hamiltonian and first integrals of the canonical Hamiltonian equations (the strong version
of Noether’s theorem).

The variational consequences of the Hamiltonian identity make it possible to establish necessary and sufficient
conditions for the canonical Hamiltonian equations to be invariant. These conditions make it clear why not every
symmetry of the Hamiltonian equations provides a first integral.

The Hamiltonian version of Noether’s theorem, as formulated in the paper, gives a constructive way of finding
first integrals of the canonical Hamiltonian equations once their symmetries are known. This simple method does
not require integration, as was illustrated by a number of examples. In particular, we considered the equations of
Kepler motion in various dimensions. The presented approach gives a possibility to consider canonical Hamiltonian
equations and find their first integrals without exploiting the relationship with the Lagrangian formulation (see, for
example, [23]).

The approach developed for the continuous case was applied to discrete Hamiltonian equations, which can be
obtained by a variational principle from finite-difference functionals. Similarly to the continuous case we related
invariance of discrete Hamiltonian functions to first integrals of the discrete Hamiltonian equations. In particular,
energy-conserving numerical schemes can be obtained as discrete Hamiltonian equations generated by Hamiltonian
functions invariant with respect to time translations.

The results presented here can be used to find first integrals of continuous and discrete canonical Hamilto-
nian equations. They also provide guidelines on how to construct conservative finite-difference schemes in the
Hamiltonian framework that are important in numerical implementations.
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